HMG box 4 is the principal determinant of species specificity in the RNA polymerase I transcription factor UBF.
نویسندگان
چکیده
Transcription of ribosomal genes requires, in addition to RNA polymerase I, the trans-acting factors UBF and Rib1 in Xenopus or SL1 in humans. RNA polymerase I transcription is remarkably species specific. Between closely related species SL1 is the sole determinant of this specificity. Between more distantly related species, however, UBF is also a component of this species specificity. Xenopus UBF cannot function in human RNA polymerase I transcription and human UBF cannot function in Xenopus RNA polymerase I transcription. Xenopus and human UBFs are remarkably similar at the amino acid sequence level, both containing multiple HMG box DNA binding motifs. The only major difference between xUBF and hUBF is the lack of a HMG box 4 equivalent in xUBF. Utilizing a series of hybrid UBF molecules we have identified HMG box 4 as the principal determinant of species specificity. Addition of human HMG box 4 to xUBF converts it to a form that functions in human RNA polymerase I transcription. Deletion of HMG box 4 from hUBF converts it to a form that functions in Xenopus RNA polymerase I transcription. Furthermore, mutations within Xenopus UBF demonstrate that UBF requires a precise arrangement and number of HMG boxes to function in RNA polymerase I transcription.
منابع مشابه
The Xenopus RNA polymerase I transcription factor, UBF, has a role in transcriptional enhancement distinct from that at the promoter.
Repeated sequence elements found upstream of the ribosomal gene promoter in Xenopus function as RNA polymerase I-specific transcriptional enhancers. Here we describe an in vitro system in which these enhancers function in many respects as in vivo. The principal requirement for enhancer function in vitro is the presence of a high concentration of upstream binding factor (UBF). This system is uti...
متن کاملThe RNA polymerase I transactivator upstream binding factor requires its dimerization domain and high-mobility-group (HMG) box 1 to bend, wrap, and positively supercoil enhancer DNA.
Upstream binding factor (UBF) is an important transactivator of RNA polymerase I and is a member of a family of proteins that contain nucleic acid binding domains named high-mobility-group (HMG) boxes because of their similarity to HMG chromosomal proteins. UBF is a highly sequence-tolerant DNA-binding protein for which no binding consensus sequence has been identified. Therefore, it has been s...
متن کاملThe RNA polymerase I transcription factor UBF is a sequence-tolerant HMG-box protein that can recognize structured nucleic acids
Upstream Binding Factor (UBF) is important for activation of ribosomal RNA transcription and belongs to a family of proteins containing nucleic acid binding domains, termed HMG-boxes, with similarity to High Mobility Group (HMG) chromosomal proteins. Proteins in this family can be sequence-specific or highly sequence-tolerant binding proteins. We show that Xenopus UBF can be classified among th...
متن کاملDNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules.
The so-called upstream binding factor (UBF) is required for the initial step in formation of an RNA polymerase I initiation complex. This function of UBF correlates with its ability to induce the ribosomal enhancesome, a structure which resembles in its mass and DNA content the nucleosome of chromatin. DNA looping in the enhancesome is probably the result of six in-phase bends induced by the HM...
متن کاملCK2-mediated stimulation of Pol I transcription by stabilization of UBF–SL1 interaction
High levels of rRNA synthesis by RNA polymerase I are important for cell growth and proliferation. In vitro studies have indicated that the formation of a stable complex between the HMG box factor [Upstream binding factor (UBF)] and SL1 at the rRNA gene promoter is necessary to direct multiple rounds of Pol I transcription initiation. The recruitment of SL1 to the promoter occurs through protei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 23 22 شماره
صفحات -
تاریخ انتشار 1995